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A path integral approach to effective non-linear medium
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Abstract. In this article, we propose a new method to compute the effective properties of non-linear
disordered media. We use the fact that the effective constants can be defined through the minimum of
an energy functional. We express this minimum in terms of a path integral allowing us to use many-body
techniques. We obtain the perturbation expansion of the effective constants to second order in disorder, for
any kind of non-linearity. We apply our method to the case of strong non-linearities (i.e. D = ε(E2)κ/2E,
where ε is fluctuating from point to point), and to the case of weak non-linearity (i.e. D = εE + χ(E2)E
where ε and χ fluctuate from point to point). Our results are in agreement with previous ones, and could
be easily extended to other types of non-linear problems in disordered systems.

PACS. 72.20.Ht High-field and nonlinear effects – 77.84.Lf Composite materials

1 Introduction

The study of the properties of linear heterogeneous media
(such as composites, suspensions) has been the subject of
an intense activity for already fifty years (see the reviews
[1,2]). More recently there has been a great interest in
non-linear media [2]. The non-linearities appear in strong
applied fields. In that case, one must expand the local
generalized susceptibility in powers of the applied field.
If the system is invariant under inversion symmetries [3],
one can write a relation between the displacement field D
and the electric field E in the form

D = εE + χ(E2)E (1)

or in the metallic case

j = σE + χ(E2)E. (2)

In some cases, the material does not possess a linear
regime, and the local equation becomes

D = χ(E2)κ/2E (3)

with κ ≥ −1 (and a similar equation in the metallic case).
In the former case, we can speak of “weak” non-linearity
(WNL) and in the latter one of “strong” non-linearity
(SNL). In the preceding equations, the quantities ε and χ
are position-dependent and fluctuate randomly from point
to point.

It has been shown [4] that the WNL case is connected
to conductivity fluctuations, the so-called flicker noise [2].

a e-mail: mark@argento.bu.edu

It has also been shown [4], that in the limit of weak non-
linearity (i.e. χE2 � ε), the effective non-linear suscep-
tibility χ∗ is related to the fourth moment of the local
electric field computed in the linear problem (i.e. χ = 0).
This shows in particular that the effective non-linear sus-
ceptibility is very sensitive to the micro-structure and that
one should be careful in building effective medium approx-
imations [5]. This result allowed Stroud and Hui to com-
pute the effective susceptibility to first order in impurity
concentration. In addition, Zeng et al. [6] used this rela-
tion between the fourth moment of the electric field and
the effective non-linear susceptibility in order to propose
an effective medium approximation (EMA). This approx-
imation relies essentially on the “factorization approxima-
tion” (which assumes that the local electric field is Gaus-
sian distributed, a questionable hypothesis, especially near
the percolation threshold). The critical behavior (near the
percolation threshold) was investigated in details by Levy
and Bergman [7] and numerical simulations were done in
[8,9]. In the case where the non-linear term behaves as
χ(E2)κ/2E, Hui and Chung gave a generalization of the
effective medium approximation [10].

In the SNL case, the first important result is due to
Blumenfeld and Bergman [11,12] who derived the second
order perturbation theory of the effective non-linear sus-
ceptibility for three-dimensional composites. This result
was extended to any dimension d [13]. Ponte-Castañeda
[14] proposed a variational approximation in order to es-
tablish optimal bounds. More recently, EMAs (and numer-
ical simulations) were developed in this strongly non-linear
case [15–18].
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For both cases, the EMA reproduces at least quali-
tatively the numerical results, but there is still a lack of
clarity in the approximations used. The method we pro-
pose here could serve as a starting point for alternative
derivations of EMA’s, and possesses the advantage of not
being limited to a special kind of non-linearities. More-
over, we believe that this method could be applied to the
celebrated random fuse network problem (see for example
the review [19]). The essential point in our method is that
one can define the effective constant through the mini-
mum (with some constraints) of the stored (or dissipated)
energy. We then express this (constrained) minimum in
terms of a path integral, allowing us to apply usual meth-
ods from many-body theory. We derive the second-order
perturbation theory for any types of non-linearities (leav-
ing more refined approximations for the future [20]). We
illustrate our results on both the SNL and WNL cases.

In the next part, we present the basic equations and
derive the second-order perturbation theory. In Sections
2.2 and 2.3 we apply our method to the SNL and WNL
cases.

2 Calculations

2.1 Basic equations and second-order perturbation
theory

The effective constants are usually defined through the
following relations. In the WNL case, we have

〈D〉 = ε∗E0 + χ∗(E2
0 )E0 (4)

where E0 is the average field, while in the SNL case

〈D〉 = χ∗(E2
0 )κ/2E0. (5)

We first note that there is an alternative definition of the
effective constants (see [14] and references therein). Let
us denote by σi, i = 1, ..., d the generic zero-divergence
d-dimensional field. In the dielectric case σ is the displace-
ment field σi = Di whereas in the conducting case it is
the current σi = ji. The stored energy W (or dissipated
energy in the conducting case) in the system is given in
terms of the energy density w by

W =

∫
ddxw(σ(x)). (6)

Hereafter, we take the volume of the sample equal to one.
For heterogeneous materials, the energy density depends
on random quantities fluctuating from point to point. We
will specialize our discussion to binary disorder for which
the parameters can take only two values (our method
can easily be generalized to other types of disorder). We
thus assume that the energy density, at each point, is dis-
tributed according to the following distribution probabil-
ity

P (w = w(σ(x))) = pδ(w−w1(σ(x))) + qδ(w−w2(σ(x))).
(7)

The alternative of solving Maxwell’s equations is to mini-
mize the total energy W subjected to the two constraints
∇ · σ = 0 and σi = Υi [14] (the bar denotes the spatial
average). As is the case for the free energy in disordered
systems, one expects this minimum to be self-averaging,
allowing us to compute its average over disorder

〈min σ=Υ
∇·σ=0

∫
ddxw(σ)〉 = W ∗(Υ ) (8)

where the brackets 〈·〉 denotes the average over disor-
der and W ∗ denotes the stored energy in a homogeneous
medium characterized by effective constants. The prob-
lem thus reduces to the calculation of the average of the
minimum of a functional of the field subjected to the con-
straints of zero divergence and fixed mean value. The main
point is to rewrite this constrained minimum as a path in-
tegral

min σ=Υ
∇·σ=0

∫
ddxw(σ(x))=limβ→∞−

1

β
ln

∫
Dσ

× δ(∇·σ)δ(σ−Υ )e−β
∫
w(σ(x)).

(9)

The minimum can thus be interpreted as the ground state
energy associated to the partition function Z given by

Z =

∫
Dσδ(∇ · σ)δ(σ − Υ )e−β

∫
w(σ(x)). (10)

We have to compute the average of the logarithm of (10).
In order to compute this quantity, we introduce replicas
[21] and use lnZ = limn→0

Zn−1
n

. We thus have

W ∗ = limβ→∞limn→0 −
1

β

〈Zn〉 − 1

n
· (11)

Note that the order of the limits is important. The replica
method relies on the fact that one can easily compute 〈Zn〉
for n integer, and then take the limit n → 0. The main
quantity to study here is thus

〈Zn〉=

∫ n∏
α=1

Dσαδ(∇ · σα)δ(σα−Υ )〈e−β
∫ ∑n

α=1 w(σα(x))〉

(12)

which for a binary disorder reads

〈Zn〉 =

∫ n∏
α=1

Dσαδ(∇ · σα)δ(σα − Υ )

× exp

[∫
ddxln(pe−β

∑n
α=1 w1(σα(x))

+qe−β
∑n
α=1 w2(σα(x)))

]
. (13)

Note that in this expression, a cut-off should appear; it will
only play a role in equation (22), and we will not write it in
the intermediate expressions. We can now expand (13) to
second order in disorder. The fields σα(x) fluctuate around
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their mean value Υ . To zeroth order, we take σα(x) = Υ
in equation (13), leading to

W ∗(Υ ) = 〈w(Υ )〉. (14)

In order to set up a perturbation theory to second or-
der, we write σα(x) = Υ + εα and expand the exponen-
tial in (13)in powers of ε. We obtain (repeated indices are
summed)

〈Zn〉 ' eln〈e−βnw(Υ )〉

∫ n∏
α=1

Dεαi

× δ(∇ · εα)δ(εα)e−β
∫

ddxεαi M
αγ
ij ε

γ
j (15)

where the tensor M is given by

Mαγ
ij = δαγ [w′′ij ]− β([w′iw

′
j ]− [w′i][w

′
j ]) (16)

where w′i denotes dw
dσi

at σ = Υ (and w′′ij = d2w
dσidσj

at

σ = Υ ). The brackets [A] denote

[A] =
〈Ae−βnw(Υ )〉

〈e−βnw(Υ )〉
· (17)

In the following, we will only need the zeroth order in n
of these quantities [A], which is [A] = 〈A〉+O(n).

At this stage, we have to check that the tensor M is
positive definite. Such is the case when the term with the β
factor is sufficiently small. This term is related to the vari-
ance of the disorder, and this requirement coincides with
the definition of the low contrast limit. We can perform
the path integral (15) using the Fourier representation (see
Appendix A for details), and we obtain

〈Zn〉 ' eln〈e−βnw(Υ )〉e−
1
2

∑
k 6=0 trlnMe−

1
2

∑
k 6=0 trln(kM−1k)

(18)

(where inessential factors were omitted). The first trace
is over both space indices (i, j) and replica indices (α, γ)
and the second over replica indices only.

Without loss of generality, we can assume that the en-
ergy density is a function of σ2: w = w(σ2). In this case,
the tensor M can be written as

Mαγ
ij = δαγ(δijA−BΥiΥj)− βCΥiΥj . (19)

Let us note that, due to spatial isotropy, the only tensors
that can appear are δij and ΥiΥj . One can then compute
the determinants in expression (18) and one obtains (for
n→ 0 and to the first order in the variance of disorder)

1

n
trlnM ' (d− 1)ln(A) + ln(A−BΥ 2)−

βCΥ 2

A−BΥ 2

(20)

and

1

n
trln(kM−1k)' ln(

k2

A
−

B(k · Υ )2

A(A−BΥ 2
)

+
βACΥ 2

(A−BΥ 2)((A−BΥ 2)k2−B(k·Υ )2)
·

(21)

The effective energy is given by the dominant term in β

W ∗(Υ ) = 〈w(Υ )〉 −
1

2

CΥ 2

A−BΥ 2

×

1−
A

A−BΥ 2

1

(2Λ)d

∑
k 6=0

(k · Υ̂ )2

k2 + U(k · Υ̂ )2


(22)

where U = BΥ2

A−BΥ 2 and we have explicitly written the cut-

off Λ in Fourier space (Υ̂ is the normalized vector Υ/|Υ |).
The sum over k can be transformed into an integral

(expressed in d-dimensional polar coordinates)

1

(2Λ)d

∑
k 6=0

f(θ) =
d

SdΛd

∫ Λ

0

dkkd−1

∫
dθ1 · · ·dθd−2

×

∫ π

0

dθsind−2θ
cos2θ

1 + Ucos2θ
(23a)

=
Sd−1

Sd

∫ π

0

dθsind−2θ
cos2θ

1 + Ucos2θ
(23b)

where Sd is the surface of the d-dimensional sphere Sd =
2πd/2

Γ (d/2) . We finally find

W ∗(Υ ) = 〈w(Υ )〉 −
1

2

CΥ 2

A−BΥ 2

×

[
1−

A

A−BΥ 2

Sd−1

Sd
I(d, U)

]
(24)

where

I(d, U) =

∫ π

0

dθsind−2θ
cos2θ

1 + Ucos2θ
· (25)

These expressions (24, 25) are our main results. They rep-
resent the expansion of the effective constant to second
order for any type of non-linearities.

In the next section (Sect. 2.2), we apply this result to
the case of SNL and we will recover the results of Bergman
and Lee [13]. In Section 2.3, we apply our result to the
WNL case.

2.2 Application to the strongly non-linear case

In the case of SNL, where D = χ(x)(E2)κ/2 the energy
density is given by w(D) = a(x)(D2)ν/2 where ν = κ+2

κ+1

and a = (χ)−
1
κ+1 . We recall here that in this method we

have to express the energy density in terms of the diver-
gence free field (i.e. D) and not E. The tensor M here
reads

Mαγ
ij = δαγ(Aδij −BΥiΥj)− βCΥiΥj (26)

where

A = ν〈a〉Υ ν−2 (27a)

B = ν(2− ν)〈a〉Υ ν−4 (27b)

C = ν2〈δa2〉Υ 2ν−4 (27c)
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and U = 2−ν
ν−1 = κ, (Υ = D). Here and in the following

〈δXY 〉 = 〈XY 〉 − 〈X〉〈Y 〉. We see that M is positive def-
inite, only if βC is small enough, which is the condition
for a low disorder expansion. We obtain (using (24))

a∗ =
W ∗

(Υ 2)ν/2
(28)

= 〈a〉 −
ν

2(ν − 1)

〈δa2〉

〈a〉

[
1−

1

ν − 1

Sd−1

Sd
I(d, κ)

]
. (29)

Given that a∗ = (χ∗)−
1
κ+1 , we find the following per-

turbation expansion for χ∗ for any space dimension (see
Appendix B for details)

χ∗ = 〈χ〉 −
1

2

〈δχ2〉

〈χ〉
(κ+ 2)

Sd−1

Sd
I(d, κ) + o(〈δχ2〉). (30)

This is the d-dimensional result in the SNL case. It is
the same expression as in [13] (this can be seen using the

change of variables u = cosθ, and v2 = 1− 1−u2

1− κ
κ+1u

2 ). For

d = 2, the result (30) reads

χ∗ = 〈χ〉 −
〈δχ2〉

〈χ〉

κ+ 2

2κ

(
1−

1
√

1 + κ

)
(31)

and for d = 3

χ∗ = 〈χ〉 −
〈δχ2〉

〈χ〉

κ+ 2

2κ

(
1−

1
√
κ

arcsin

√
κ

κ+ 1

)
. (32)

2.3 Application to the weakly non-linear case

In the WNL case, the energy density is w = ε(x)(E2) +
χ(x)(E2)2 which in terms of D gives w(D) = a(x)(D2) +
b(x)(D2)2 + O(D6) with a(x) = 1/ε(x) and b(x) =
−χ(x)/ε4(x). We note that although b(x) < 0, there are
higher-order terms which are positive and guarantee the
convergence of the integrals. We note that in this case we
can go beyond perturbation theory but we will present
these results elsewhere [20].

In this case, we find

A = 〈a〉 − 〈b〉Υ 2 (33a)

B = 2〈b〉 (33b)

C = 〈δ(a− bΥ 2)2〉 (33c)

and U = BΥ2

A−BΥ 2 , (Υ = D).
In general, the effective energy will not be a polynomial

of the form W ∗ = a∗Υ 2 + b∗Υ 4. In order to identify the
effective coefficients, we have to expand the quantity W ∗

to fourth order in Υ . We obtain

a∗ = 〈a〉 −
〈δa2〉

〈a〉

(
1−

1

d

)
(34)

and

b∗=〈b〉−2

(
1−

1

d

)[(
3−

2

d+ 2

)
〈b〉

〈a〉

〈δa2〉

〈a〉
− 2
〈δab〉

〈a〉

]
·

(35)

We see in these expressions that for d = 1, we obtain a∗ =
〈a〉 and b∗ = 〈b〉. This is the exact result since for d = 1,
the constraints∇·σ = 0 and σ = Υ imply σ = const. = Υ .

Knowing that a = 1/ε and b = χ/ε4, we obtain after
straightforward but tedious calculations (see Appendix B)

ε∗ ' 〈ε〉 −
1

d

〈δε2〉

〈ε〉
(36)

and

χ∗'〈χ〉

[
1−4

(
2−

1

d

)
〈δεχ〉

〈ε〉〈χ〉
+2

(
10d2+15d−16

d(d+2)

)
〈δε2〉

〈ε〉

]
·

(37)

These are the second-order perturbation results for the
effective coefficients in the WNL case. We note the sur-
prising result that, at this order, ε∗ does not depend on
moments of χ and that χ∗ does not depend on 〈δχ2〉.
This suggests that the effective medium result for ε∗

should be independent of the non-linearity (in this weak
non-linearity limit) and that χ∗ is not determined self-
consistently but is a function of ε∗ (this seems to be the
case in a self-consistent resummation of the perturbation
theory [20]).

3 Conclusion

In this article, we proposed a new method to compute
effective properties of disordered non-linear media for any
type of non-linearities. In the case of strong non-linearity,
we recover the known perturbation results and we present
the second order perturbation result for the weakly non-
linear case. We would like to emphasize that our method is
general and could be used in many other situations (such
as plasticity of porous media or the random fuse network).
Moreover, this framework could be used as a starting point
for more refined approximations.

One of us (MB) wants to thank D.J. Bergman for useful cor-
respondence and Y.-P. Pellegrini for stimulating discussions.

Appendix A

In this appendix, we compute the path integral in expres-
sion (15). For this purpose, we will use the Fourier repre-
sentation of the field εα(x) (we keep the same notation for
the field and its Fourier transform)

εα(x) =
∑
k

ε̃α(k)eik·x. (A.1)

The integral (15) can thus be rewritten as∫
ddε̃α(0)e−βε̃(0)·M·ε̃(0)∫ ∏

k 6=0

ddε̃α(k)δ(k · ε̃α(k))e−β
∑
k 6=0 ε̃(k)·M·ε(−k). (A.2)
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By exponentiating the δ-functions, one finds after integra-
tion the result (Eq. (18)) of the main text

〈Zn〉 ' eln〈e−βnw(Υ )〉e−
1
2

∑
k 6=0 trlnMe−

1
2

∑
k 6=0 trln(kM−1k).

(A.3)

Appendix B

We explicit here the relation between the perturbation
expansion of a and that of χ. We look for an expansion of
χ∗ of the form

χ∗ = 〈χ〉 −
〈δχ2〉

〈χ〉
gχ. (B.1)

We expand this expression in power of the contrast ∆ =
χ2 − χ1, and find

χ∗ ' χ1 + q∆−
pq∆2

χ1
gχ. (B.2)

Now, assuming that the perturbation expansion for a is of
the form

a∗ = 〈a〉 −
〈δa2〉

〈a〉
ga (B.3)

this leads to (to second order in ∆)

a∗'χ−1/(κ+1)
1

[
1−

q∆

χ1(κ+1)
+

q∆2

χ2
1(κ+1)2

(
κ+2

2
−pga

)]
.

(B.4)

On the other hand, the relation between the functions ga
is gχ is found using a∗ = (χ∗)−1/(κ+1). Expanding this
relation to second order in ∆, we find

a∗'χ−1/(κ+1)
1

[
1−

q∆

χ1(κ+1)
+

q∆2

χ2
1(κ+1)

(
pgχ+

q

2

κ+2

κ+1

)]
·

(B.5)

Comparing expressions (B.4) and (B.5), we obtain

gχ =
1

2

κ+ 2

κ+ 1
−

ga

κ+ 1
· (B.6)

This relation allows to relate gχ and ga.
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